课程简介
幻灯片算法讲解,结合代码分析
目标收益
结合实际应用举例和和业界趋势分析
既有 TensorFlow 的案例,也有高层类库 Keras 的实践
培训对象
对深度学习算法原理和应用感兴趣的技术人员,具有一定编程(Python)和数学基础(线性代数、微积分、概率论)的技术人员。
课程大纲
1. TensorFlow 入门 |
- Overview - Graphs and Sessions 图和会话 1) Tensor 2)Data Flow Graphs 3)Graph and sub-Graph - Distributed Computation 分布式计算 |
2. TensorFlow Ops 操作符 |
- Basic operations - Tensor types - Constants and variables - Feeding inputs - TensorBoard |
3. Basic Model 基本模型 |
- Linear regression in TensorFlow - Optimizers - Logistic regression - Loss functions |
4. Model Structure 模型结构 |
- Overall structure of a model in TensorFlow - word2vec - Name scope - Embedding visualization |
5. Experiments Management 实验管理 |
- tf.train.Saver - tf.summary - Randomization - Data Readers |
6. Application 实战 |
- AutoEncoder - MLP - CNN(AlexNet,VGGNet,Inception Net,ResNet) - RNN(LSTM,Bi-RNN) - Deep Reinforcement Learning(Policy Network、Value Network) |
1. TensorFlow 入门 - Overview - Graphs and Sessions 图和会话 1) Tensor 2)Data Flow Graphs 3)Graph and sub-Graph - Distributed Computation 分布式计算 |
2. TensorFlow Ops 操作符 - Basic operations - Tensor types - Constants and variables - Feeding inputs - TensorBoard |
3. Basic Model 基本模型 - Linear regression in TensorFlow - Optimizers - Logistic regression - Loss functions |
4. Model Structure 模型结构 - Overall structure of a model in TensorFlow - word2vec - Name scope - Embedding visualization |
5. Experiments Management 实验管理 - tf.train.Saver - tf.summary - Randomization - Data Readers |
6. Application 实战 - AutoEncoder - MLP - CNN(AlexNet,VGGNet,Inception Net,ResNet) - RNN(LSTM,Bi-RNN) - Deep Reinforcement Learning(Policy Network、Value Network) |