课程费用

6800.00 /人

课程时长

2

成为教练

课程简介

幻灯片算法讲解,结合代码分析

目标收益

结合实际应用举例和和业界趋势分析
既有 TensorFlow 的案例,也有高层类库 Keras 的实践

培训对象

对深度学习算法原理和应用感兴趣的技术人员,具有一定编程(Python)和数学基础(线性代数、微积分、概率论)的技术人员。

课程大纲

1. TensorFlow 入门 - Overview
- Graphs and Sessions 图和会话
1) Tensor
2)Data Flow Graphs
3)Graph and sub-Graph
- Distributed Computation 分布式计算
2. TensorFlow Ops 操作符 - Basic operations
- Tensor types
- Constants and variables
- Feeding inputs
- TensorBoard
3. Basic Model 基本模型 - Linear regression in TensorFlow
- Optimizers
- Logistic regression
- Loss functions
4. Model Structure 模型结构 - Overall structure of a model in TensorFlow
- word2vec
- Name scope
- Embedding visualization
5. Experiments Management 实验管理 - tf.train.Saver
- tf.summary
- Randomization
- Data Readers
6. Application 实战 - AutoEncoder
- MLP
- CNN(AlexNet,VGGNet,Inception Net,ResNet)
- RNN(LSTM,Bi-RNN)
- Deep Reinforcement Learning(Policy Network、Value Network)
1. TensorFlow 入门
- Overview
- Graphs and Sessions 图和会话
1) Tensor
2)Data Flow Graphs
3)Graph and sub-Graph
- Distributed Computation 分布式计算
2. TensorFlow Ops 操作符
- Basic operations
- Tensor types
- Constants and variables
- Feeding inputs
- TensorBoard
3. Basic Model 基本模型
- Linear regression in TensorFlow
- Optimizers
- Logistic regression
- Loss functions
4. Model Structure 模型结构
- Overall structure of a model in TensorFlow
- word2vec
- Name scope
- Embedding visualization
5. Experiments Management 实验管理
- tf.train.Saver
- tf.summary
- Randomization
- Data Readers
6. Application 实战
- AutoEncoder
- MLP
- CNN(AlexNet,VGGNet,Inception Net,ResNet)
- RNN(LSTM,Bi-RNN)
- Deep Reinforcement Learning(Policy Network、Value Network)

课程费用

6800.00 /人

课程时长

2

预约体验票 我要分享

近期公开课推荐

近期公开课推荐

活动详情

提交需求