为您找到248个相关课程
展开简介
收益目标:1、大数据在行业、领域中的应用案例及实践;案例涉及到Hadoop、Hbase、Spark、Flink、kafka、es、redis等开发组件的应用案例及实践; 2、应用案例及实践是如何搭建的、相关技术组件在实际使用过程中的注意事项及关键点;搭建就是指基础组件如何搭建应用; 3、在反欺诈方面(羊毛党)、安全方面、金融方面、风控方面,这四个方面的应用案例及实践,重点讲反欺诈方面(羊毛党); 4、从思想到技术再到实操,深入系统的剖析大数据思想、大数据技术、大数据实践,使学员全面的、正确的认识大数据,并通过动手实践编写大数据挖掘程序,使学员深入理解大数据; 5、使学员深入理解Hadoop、Hbase、Spark、Flink、kafka、es、redis为代表的大数据分布式技术框架; 6、使学员掌握Hadoop、Hbase、Spark、Flink、kafka、es、redis大数据编程技术,能够达到大数据挖掘的目的; 7、从代码实践的角度剖析大数据分布式技术执行的具体过程并具备大数据开发能力; 通过分享大数据在金融结算方面的应用案例,如反欺诈、金融风险防范、金融数据分析可利用的价值方向等,加深对大数据的理解。
适应人群:1、对大数据的数据分析、数据挖掘感兴趣的企业或者个人; 2、适合于想通过数据化决策防范风险等相关的企业或者个人; 3、对大数据、分布式存储、分析等感兴趣的人员; 4、大型网站、电商网站等运维人员; 5、云计算、大数据从业者; 6、熟悉Hadoop生态体系,想了解和学习Hadoop与Spark整合在企业应用实战案例的朋友; 7、系统架构师、系统分析师、高级程序员、资深开发人员; 8、牵涉到大数据处理的数据中心运行、规划、设计负责人; 9、政府机关,金融保险、移动互联网等大数据单位的负责人; 10、高校、科研院所大数据研究人员,涉及到大数据与分布式数据处理的人员; 11、数据仓
关键词:我是运维经理,互联网,人工智能,大数据,机器学习,数据挖掘,数据分析,创新,Hadoop,Spark,分布式,大数据分析,AR
收益目标:了解大数据生态圈核心技术 掌握Hadoop的原理及使用 掌握分布式计算引擎(Spark+Flink)的原理及使用 掌握OLAP分析引擎的原理及使用(Hive+ClickHouse) 了解数据仓库(离线+实时)的架构设计
适应人群:有一定编程基础,想学习和了解大数据的学员 计算机相关专业,未来向大数据领域方向发展的学员
关键词:互联网,其他,大数据,SQL,数据分析,Hadoop,Spark,分布式
收益目标:纵观IT运维的演进,我们可以看到,智能运维已经成为新运维演化的一个开端;运维智能化演进的基础是运维自动化、运维数据化,如何从场景化的自动化运维常态,通过数据积累、大数据分析、模型构建、机器学习等来逐步落地智能化运维。
适应人群:暂无
关键词:互联网,大数据,机器学习,运维,自动化运维
收益目标:1、云计算核心概念和使用经验 2、如何设计良好的云上系统架构 3、如何迁移到公有云 4、公有云的安全如何设计 5、如何在云上进行自动化运维 6、如何设计现代大数据架构
适应人群:适用于企业IT技术经理,系统架构师,IT运维工程师,大数据工程师等。 该课程为中高级课程,对于进行基于公有云的系统部署运维、产品开发设计特别有帮助 1、对公有云尚没有实际使用经验IT人员团队 2、对公有云成本无评估经验的项目管理团队 3、想要借公有云快速验证产品原型的创新团队
关键词:互联网,大数据,云计算,数据架构,敏捷开发,DevOps,运维,敏捷,转型
收益目标:1.理解云原生架构下Java应用的挑战与机遇; 2.掌握Java性能优化的关键工具和策略; 3.学习提升研发流程效率的现代方法和工具; 4.了解AI将如何促进研发效能的提升; 5.了解Java在人工智能、向量数据库等新兴领域的应用案例; 6.洞察Java技术的未来发展,把握技术趋势;
关键词:其他,人工智能,大数据,Java,转型,企业级,数字化转型
收益目标:了解将数据落地为真实的业务价值,了解数据如何驱动业务。
关键词:互联网,大数据
收益目标:暂无
关键词:其他,大数据,运维,数据库,MongoDB
收益目标:1、数据分析的概念、表现形式与方法 2、数据分析的常用工具与应用 3、运用数据分析促进管理和运营的方法和路线图 4、通过现场模拟实战案例,全面掌握运用数据分析的实战技巧 5、中美知名企业用数据提升竞争力的经验和失败教训分享
适应人群:企业的商务分析师、数据分析师、业务部门经理、管理决策人士等。一切对运用数据分析做商业创新感兴趣的技术与管理人士。
关键词:互联网,大数据,数据分析,统计学常见方法,数据分析与商业应用,大数据分析,数据建模,数据算法及应用,数据分析生命周期,数据分析方法全景图
收益目标:1.对腾讯游戏的运营实践经验有一定了解; 2.介绍平台在架构上设计及历史演进; 3.介绍机器学习流水线的建设及优化实践;
关键词:互联网,大数据,机器学习
关键词:其他,架构师,大数据,数据架构,SQL,大数据平台
收益目标:意识到企业所面临的外部威胁,了解到各种威胁解决思路
关键词:互联网,大数据,机器学习,SQL
收益目标:•了解宜信四大开源项目的设计思想、定位和能力; •了解宜信敏捷数据中台的建设思路、定位和价值; •了解宜信敏捷数据中台技术架构和设计思路; •了解宜信敏捷数据中台支持的典型数据应用场景;
关键词:互联网,大数据,数据架构
活动详情
To Be Better
注册或 找回密码?